Search results for "Interactive methods"

showing 10 items of 34 documents

LR-NIMBUS : an interactive algorithm for uncertain multiobjective optimization with lightly robust efficient solutions

2022

In this paper, we develop an interactive algorithm to support a decision maker to find a most preferred lightly robust efficient solution when solving uncertain multiobjective optimization problems. It extends the interactive NIMBUS method. The main idea underlying the designed algorithm, called LR-NIMBUS, is to ask the decision maker for a most acceptable (typical) scenario, find an efficient solution for this scenario satisfying the decision maker, and then apply the derived efficient solution to generate a lightly robust efficient solution. The preferences of the decision maker are incorporated through classifying the objective functions. A lightly robust efficient solution is generated …

Control and OptimizationApplied Mathematicspäätöksentekolight robust efficiencyrobust optimizationmatemaattiset menetelmätportfoliotManagement Science and Operations Researchinteractive methodsarvopaperisalkutskenaariotepävarmuusmonitavoiteoptimointiComputer Science Applicationsuncertain multiple criteria optimizationmenetelmätoptimointialgoritmitinteraktiivisuusBusiness Management and Accounting (miscellaneous)portfolio selection
researchProduct

Agent assisted interactive algorithm for computationally demanding multiobjective optimization problems

2015

Abstract We generalize the applicability of interactive methods for solving computationally demanding, that is, time-consuming, multiobjective optimization problems. For this purpose we propose a new agent assisted interactive algorithm. It employs a computationally inexpensive surrogate problem and four different agents that intelligently update the surrogate based on the preferences specified by a decision maker. In this way, we decrease the waiting times imposed on the decision maker during the interactive solution process and at the same time decrease the amount of preference information expected from the decision maker. The agent assisted algorithm is not specific to any interactive me…

Waiting timeta113surrogate problem NIMBUS PAINTMathematical optimizationComputer sciencebusiness.industryGeneral Chemical Engineeringinteractive methodsDecision makerMultiple objective programmingPreferenceComputer Science ApplicationsMultiobjective optimization problemInteractive algorithmmultiple objective programmingagent-based optimizationArtificial intelligencebusinessSeparation problemComputers and Chemical Engineering
researchProduct

Towards explainable interactive multiobjective optimization : R-XIMO

2022

AbstractIn interactive multiobjective optimization methods, the preferences of a decision maker are incorporated in a solution process to find solutions of interest for problems with multiple conflicting objectives. Since multiple solutions exist for these problems with various trade-offs, preferences are crucial to identify the best solution(s). However, it is not necessarily clear to the decision maker how the preferences lead to particular solutions and, by introducing explanations to interactive multiobjective optimization methods, we promote a novel paradigm of explainable interactive multiobjective optimization. As a proof of concept, we introduce a new method, R-XIMO, which provides …

johtaminenexplainable artificial intelligencepäätöksentekometsänkäsittelypäätöksentukijärjestelmätinteractive methodstekoälymonitavoiteoptimointidecision makingkoneoppiminenoptimointiArtificial Intelligenceinteraktiivisuusmultiple criteria optimizationreference point
researchProduct

Interactive Multiobjective Robust Optimization with NIMBUS

2018

In this paper, we introduce the MuRO-NIMBUS method for solving multiobjective optimization problems with uncertain parameters. The concept of set-based minmax robust Pareto optimality is utilized to tackle the uncertainty in the problems. We separate the solution process into two stages: the pre-decision making stage and the decision making stage. We consider the decision maker’s preferences in the nominal case, i.e., with the most typical or undisturbed values of the uncertain parameters. At the same time, the decision maker is informed about the objective function values in the worst case to support her/him to make an informed decision. To help the decision maker to understand the behavio…

Mathematical optimization021103 operations researchComputer sciencepareto-tehokkuuspäätöksenteko0211 other engineering and technologiesPareto principlemultiple criteria decision makingRobust optimization02 engineering and technologyrobustnessinteractive methodsDecision makerMinimaxTwo stagesrobust Pareto optimalitymonitavoiteoptimointiepävarmuusMultiobjective optimization problemRobustness (computer science)0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processing
researchProduct

Survey of methods to visualize alternatives in multiple criteria decision making problems

2012

When solving decision problems where multiple conflicting criteria are to be considered simultaneously, decision makers must compare several different alternatives and select the most preferred one. The task of comparing multidimensional vectors is very demanding for the decision maker without any support. Different graphical visualization tools can be used to support and help the decision maker in understanding similarities and differences between the alternatives and graphical illustration is a very important part of decision support systems that are used in solving multiple criteria decision making problems. The visualization task is by no means trivial because, on the one hand, the grap…

Decision support systemComputer sciencevisualisointiDecision treeManagement Science and Operations Researchgraafinen kuvituscomparison of alternativesmulticriteria optimizationInfluence diagramirralliset vaihtoehdotmultiobjective optimizationvaihtoehtojen vertailudiscrete alternativesvisualizationMCDMDecision engineeringpareto optimalityManagement scienceEvidential reasoning approachinteractive methodsMultiple-criteria decision analysisgraphical illustrationBusiness Management and Accounting (miscellaneous)päätösanalyysiDecision analysisOptimal decisionOR Spectrum
researchProduct

NAUTILUS Navigator : free search interactive multiobjective optimization without trading-off

2019

We propose a novel combination of an interactive multiobjective navigation method and a trade-off free way of asking and presenting preference information. The NAUTILUS Navigator is a method that enables the decision maker (DM) to navigate in real time from an inferior solution to the most preferred solution by gaining in all objectives simultaneously as (s)he approaches the Pareto optimal front. This means that, while the DM reaches her/his most preferred solution, (s)he avoids anchoring around the starting solution and, at the same time, sees how the ranges of the reachable objective function values shrink without trading-off. The progress of the motion towards the Pareto optimal front is…

Mathematical optimizationControl and Optimization0211 other engineering and technologiesAnchoringpäätöksentukijärjestelmät02 engineering and technologyManagement Science and Operations ResearchMulti-objective optimizationMotion (physics)Set (abstract data type)käyttöliittymätPreference (economics)MathematicsGraphical user interface021103 operations researchbusiness.industryApplied Mathematicsgraphical user interfaceFunction (mathematics)interactive methodsDecision makermonitavoiteoptimointiComputer Science Applicationsnavigointiinteraktiivisuusmulticriteria decision makingbusinesstrade-off free
researchProduct

An Interactive Evolutionary Multiobjective Optimization Method: Interactive WASF-GA

2015

In this paper, we describe an interactive evolutionary algorithm called Interactive WASF-GA to solve multiobjective optimization problems. This algorithm is based on a preference-based evolutionary multiobjective optimization algorithm called WASF-GA. In Interactive WASF-GA, a decision maker (DM) provides preference information at each iteration simple as a reference point consisting of desirable objective function values and the number of solutions to be compared. Using this information, the desired number of solutions are generated to represent the region of interest of the Pareto optimal front associated to the reference point given. Interactive WASF-GA implies a much lower computational…

Mathematical optimizationOptimization problemMultiobjective programmingComputer scienceEvolutionary algorithmReference point approachInteractive evolutionary computationPareto optimal solutionsEvolutionary algorithmsPreference (economics)AlgorithmMulti-objective optimizationInteractive methods
researchProduct

IRA-EMO : Interactive Method Using Reservation and Aspiration Levels for Evolutionary Multiobjective Optimization

2019

We propose a new interactive evolutionary multiobjective optimization method, IRA-EMO. At each iteration, the decision maker (DM) expresses her/his preferences as an interesting interval for objective function values. The DM also specifies the number of representative Pareto optimal solutions in these intervals referred to as regions of interest one wants to study. Finally, a real-life engineering three-objective optimization problem is used to demonstrate how IRA-EMO works in practice for finding the most preferred solution. peerReviewed

Mathematical optimization021103 operations researchOptimization problemComputer sciencemieltymykset0211 other engineering and technologiesReservation02 engineering and technologyInterval (mathematics)interactive methodsMulti-objective optimizationmonitavoiteoptimointievolutionary multi-objective optimization0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingregion of interestreference point
researchProduct

A visualization technique for accessing solution pool in interactive methods of multiobjective optimization

2015

<pre>Interactive methods of <span>multiobjective</span> optimization repetitively derive <span>Pareto</span> optimal solutions based on decision maker's preference information and present the obtained solutions for his/her consideration. Some interactive methods save the obtained solutions into a solution pool and, at each iteration, allow the decision maker considering any of solutions obtained earlier. This feature contributes to the flexibility of exploring the <span>Pareto</span> optimal set and learning about the optimization problem. However, in the case of many objective functions, the accumulation of derived solutions makes accessing the sol…

multidimensional scalingMathematical optimizationOptimization problemComputer Networks and CommunicationsComputer sciencevisualisointiPareto front visualizationcomputer.software_genreMulti-objective optimizationSet (abstract data type)menetelmätMultidimensional scalingMultiobjective optimizationdimensionality reductionFlexibility (engineering)pareto-tehokkuusDimensionality reductionMultiobjective optimization ; interactive methods ; Pareto front visualization ; dimensionality reduction ; multidimensional scalinginteractive methodsNIMBUSmonitavoiteoptimointiComputer Science ApplicationsVisualizationComputational Theory and MathematicsFeature (computer vision)interaktiivisuusData miningcomputer
researchProduct

Flexible Data Driven Inventory Management with Interactive Multiobjective Lot Size Optimization

2021

We study data-driven decision support and formalise a path from data to decision making. We focus on lot sizing in inventory management with stochastic demand and propose an interactive multi-objective optimisation approach. We forecast demand with a Bayesian model, which is based on sales data. After identifying relevant objectives relying on the demand model, we formulate an optimisation problem to determine lot sizes for multiple future time periods. Our approach combines different interactive multi-objective optimisation methods for finding the best balance among the objectives. For that, a decision maker with substance knowledge directs the solution process with one’s preference inform…

Pareto optimalitydecision supportInformation Systems and ManagementComputer scienceinventory managementdata driven optimisationpäätöksentekomyyntilot sizingpäätöksentukijärjestelmätManagement Science and Operations ResearchManagement Information SystemsData-drivenInventory managementmulticriteria optimisationtoimitusketjutoptimointiBayesian modelsvarastotpareto-tehokkuusbayesilainen menetelmäinteractive methodsIndustrial engineeringdemand forecastingmonimuuttujamenetelmätkysyntäanalyysivarastonvalvontaennustettavuusmallit (mallintaminen)International Journal of Logistics Systems and Management
researchProduct